367 research outputs found

    Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    Get PDF
    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors

    A prototype for water content measurement in partially saturated soils

    Get PDF
    The paper presents the technological set-up and calibration of a system based on impedance spectroscopy for measuring water content in partially saturated soils. The technique adopted is relatively recent in geotechnical practice; it is used herein to characterize the electrical response of a soil specimen among two conducting electrodes upon application of an alternate voltage and the measurement of the current intensity resulting across the specimen, for frequency values in the range [500 Hz - 50 kHz]. The complex impedance of the soil specimen is due to both resistance, i.e. opposition to current, and reactance, i.e. tendency of the system to yield and retrieve energy, and it depends on the specimen water content. An on-purpose experimental plan has been conceived and is presented herein, aimed at building a calibration function for deriving the water content in pyroclastic soils from the impedance measurements. Preliminary results reveal an adequate level of repeatability of the measurements and suggest the existence of a monotonic correlation between the impedance modulus and the gravimetric water content

    Heterodyne Receiver for Origins

    Get PDF
    The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 ÎŒm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared /Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research

    Identification of Novel Fibrosis Modifiers by In Vivo siRNA Silencing.

    Get PDF
    Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo

    Cation- and vacancy-ordering in Li_xCoO_2

    Full text link
    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we have studied the Li/Co ordering in LiCoO_2 and Li-vacancy/Co ordering in CoO_2. We find: (i) A ground state search of the space of substitutional cation configurations yields the (layered) CuPt structure as the lowest-energy state in the octahedral system LiCoO_2 (and CoO_2), in agreement with the experimentally observed phase. (ii) Finite temperature calculations predict that the solid-state order- disorder transitions for LiCoO_2 and CoO_2 occur at temperatures (~5100 K and ~4400 K, respectively) much higher than melting, thus making these transitions experimentally inaccessible. (iii) The energy of the reaction E(LiCoO_2) - E(CoO_2) - E(Li) gives the average battery voltage V of a Li_xCoO_2/Li cell. Searching the space of configurations for large average voltages, we find that CuPt (a monolayer superlattice) has a high voltage (V=3.78 V), but that this could be increased by cation randomization (V=3.99 V), partial disordering (V=3.86 V), or by forming a 2-layer Li_2Co_2O_4 superlattice along (V=4.90 V).Comment: 12 Pages, RevTeX galley format, 5 figures embedded using epsf Phys. Rev. B (in press, 1998

    Optical Design of the Origins Space Telescope

    Get PDF
    This paper discusses the optical design of the Origins Space Telescope. Origins is one of four large missions under study in preparation for the 2020 Decadal Survey in Astronomy and Astrophysics. Sensitive to the mid- and far-infrared spectrum (between 2.8 and 588 m), Origins sets out to answer a number of important scientific questions by addressing NASAs three key science goals in astrophysics. The Origins telescope has a 5.9 m diameter primary mirror and operates at f/14. The large on-axis primary consists of 18 keystone segments of two different prescriptions arranged in two annuli (six inner and twelve outer segments) that together form a circular aperture in the goal of achieving a symmetric point spread function. To accommodate the 46 x 15 arcminute full field of view of the telescope at the design wavelength of = 30 m, a three-mirror anastigmat configuration is used. The design is diffraction-limited across its instruments fields of view. A brief discussion of each of the three baselined instruments within the Instrument Accommodation Module (IAM) is presented: 1) Origins Survey Spectrometer (OSS), 2) Mid-infrared Spectrometer, Camera (MISC) transit spectrometer channel, and 3) Far-Infrared Polarimeter/Imager (FIP). In addition, the up scope options for the observatory are laid out as well including a fourth instrument: the Heterodyne Receiver for Origins (HERO)

    Risk and Value in Privately Financed Health care Projects

    Get PDF
    An empirical study is presented to investigate the risk factors affecting the value for money that can be obtained from using the public-private partnership delivery system to develop social facility projects. Based on a model describing the main risks affecting a project, a linear regression analysis is conducted on a dataset of privately financed healthcare projects in the UK to explore the main factors that might have significant relationships with the annual unitary charge payment. The results reveal that the economic and political environment, the hospital capacity, the construction duration, and the concession period are significant factors of the price paid by the granting authority. The study confirms that the unitary charge is not only affected by investment, operations and financial lifecycle costs, but also by risk factors and the level of risk allocated to the private sponsors. The proposed methodology might help both public and private parties in improving PFI project's compensation design, in order to achieve a higher value in privately financed infrastructures. The given model might also support the process of better determining the amount of annual payment based on select drivers and appropriately transferred risk factor

    Revisiting metal fluorides as lithium-ion battery cathodes.

    Get PDF
    Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/ÎČ-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.X.H. is supported by funding from EPSRC Doctoral Prize, Adolphe Merkle and the Swiss National Science Foundation (Program NRP70 No. 153990) and European Commission via MSCA (Grant 798169). A.S.E. acknowledges financial support from the Royal Society. E.C.M. acknowledges funding from European Commission via MSCA (Grant 747449) and RTI2018-094550-A-100 from MICINN. Z. L. acknowledges funding from the Faraday Institution via the FutureCat consortium. C.J.P. is supported by the Royal Society through a Royal Society Wolfson Research Merit award, and EPSRC grant EP/P022596/1. A.L.G. acknowledges funding from the ERC (Grant 788144). This research was supported as part of the North Eastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001294. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Work done at Diamond Light Source was under Proposal EE17315-1. The authors are grateful to Prof. G. Ceder and other NECCES members for many stimulating discussions concerning fluoride-based conversion reactions and on the origins of structural hysteresis. The authors also acknowledge the help from S. Dutton, T. Dean, A. Docker, M. Leskes and D. Keeble

    Designed Single-Step Synthesis, Structure, and Derivative Textural Properties of Well-Ordered Layered Penta-coordinate Silicon Alcoholate Complexes

    Get PDF
    The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+[BOND]O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal–organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.United States. Defense Advanced Research Projects Agency (control No. 0471-1627)National Institute for Biomedical Imaging and Bioengineering (U.S.) (award No. EB-001960)National Institutes of Health (U.S.) (NIBIB award No. EB-002026)National Science Foundation (U.S.) (Grant No. CHE-0946721
    • 

    corecore